
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: StrongDeFi
Date: September 18nd, 2020

Document

This document may contain confiden>al informa>on about IT systems and
the intellectual property of the customer as well as informa>on about
poten>al vulnerabili>es and methods of their exploita>on.

The report containing confiden>al informa>on can be used internally by the
customer or it can be disclosed publicly aFer all vulnerabili>es fixed - upon a
decision of the customer.

Name Smart Contract Code Review and Security Analysis Report for StrongDeFi

Type DeFi Contracts

Pla1orm Ethereum / Solidity

Methods Architecture Review, Unit Tes>ng, Func>onal Tes>ng, Computer-Aided
Verifica>on, Manual Review

Archive Name strongdefi-babramson-09-11-20.zip

SHA256 hash d2f4ef45cf962b6601aa05009c2647c925d24ecce1bf2217789e2685846ab1c3

Timeline 11 SEP 2020 – 16 SEP 2020

Changelog 16 SEP 2020 - INITIAL AUDIT
18 SEP 2020 – REMEDIATIONS

Table of contents

Document 2 ...

Table of contents 3 ...

Introduc>on 4 ..

Scope 4 ..

Execu>ve Summary 5 ...

Severity Defini>ons 6 ...

AS-IS overview 7 ..

Conclusion 30 ..

Disclaimers 31..

Introduction

Hacken OÜ (Consultant) was contracted by StrongDeFi (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of Customer's smart contract and its code
review conducted between September 11, 2020 – September 16, 2020.	

Scope

The scope of the project is smart contracts in the repository:
Audit Archive File – strongdefi-babramson-09-11-20.zip
SHA256 hash – d2f4ef45cf962b6601aa05009c2647c925d24ecce1bf2217789e2685846ab1c3

We have scanned this smart contract for commonly known and more specific
vulnerabili>es. Here are some of the commonly known vulnerabili>es that are
considered:

Category Check Item

Code review ▪ Reentrancy
▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw
▪ DoS with Block Gas Limit
▪ Transac>on-Ordering Dependence
▪ Style guide viola>on
▪ Costly Loop
▪ ERC20 API viola>on
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency
▪ Data Consistency

Func>onal review ▪ Business Logics Review
▪ Func>onality Checks
▪ Access Control & Authoriza>on
▪ Escrow manipula>on
▪ Token Supply manipula>on
▪ Assets integrity
▪ User Balances manipula>on
▪ Data Consistency manipula>on
▪ Kill-Switch Mechanism
▪ Opera>on Trails & Event Genera>on

Executive Summary

According to the assessment, the Customer's smart contracts has some cri>cal
issues that should be fixed.	

Our team performed an analysis of code func>onality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed and important vulnerabili>es are presented in
the Audit overview sec>on. A general overview is presented in AS-IS sec>on
and all found issues can be found in the Audit overview sec>on.

During the audit we found 2 cri>cal and 2 low severity issues and a bunch of
code style issues.

Graph 1. The distribu>on of vulnerabili>es.

 Critical Low

Insecure Poor secured Secured Well-secured

You are here

Severity Definitions

Risk Level DescripGon

CriGcal
Cri>cal vulnerabili>es are usually straighiorward to exploit and can lead
to assets lose or data manipula>ons.

High
High-level vulnerabili>es are difficult to exploit; however, they also have
significant impact on smart contract execu>on, e.g. public access to crucial
func>ons

Medium
Medium-level vulnerabili>es are important to fix; however, they can’t lead
to assets lose or data manipula>ons.

Low
Low-level vulnerabili>es are mostly related to outdated, unused etc.
code snippets, that can’t have significant impact on execu>on

Lowest / Code
Style / Best

PracGce

Lowest-level vulnerabili>es, code style viola>ons and info statements
can’t affect smart contract execu>on and can be ignored.

AS-IS overview

Link.sol

Link is a basic implementa>on of ERC-20 Token. Link has following parameters:

• Name: Link

• Symbol: LINK

• Decimals: 18

• Total supply: 10m

Strong.sol

Strong is a basic implementa>on of ERC-20 Token. Link has following
parameters:

• Name: Strong

• Symbol: STRONG

• Decimals: 18

• Total supply: 10m

PriceFeed.sol

PriceFeed is a contract to simulate price oracles. Used only for tes>ng
purposes.

sbCommunity.sol

sbCommunity contract is used to stake/unstake and to pay a reward to the
sbController.	

sbCommunity imports:

• Ownable

• SafeMath from OpenZeppelin.

• IERC20 from OpenZeppelin.

• sbTokensInterface

• sbControllerInterface

• sbStrongPoolInterface

• sbVotesInterface

sbCommunity has 2 events:

• NewPendingAdmin

• NewAdmin

sbCommunity has 23 fields and constants:

• bool internal initDone;

• address internal deployer;

• address internal constant ETH = address(0);

• string internal name;

• uint256 internal stakerRewardPercentage;

• IERC20 internal strongToken;

• sbTokensInterface internal sbTokens;

• sbControllerInterface internal sbController;

• sbStrongPoolInterface internal sbStrongPool;

• sbVotesInterface internal sbVotes;

• address internal sbTimelock;

• address internal admin;

• address internal pendingAdmin;

• mapping(address => mapping(address => uint256[])) internal
stakerTokenStakeDays;

• mapping(address => mapping(address => uint256[])) internal
stakerTokenStakeAmountsAdded;

• mapping(address => mapping(address => uint256[])) internal
stakerTokenStakeAmountsSubtracted;

• mapping(address => uint256[]) internal tokenStakeDays;

• mapping(address => uint256[]) internal tokenStakeAmountsAdded;

• mapping(address => uint256[]) internal tokenStakeAmountsSubtracted;

• mapping(address => uint256) internal stakerDayLastClaimedFor;

• mapping(uint256 => uint256) internal dayServiceRewards;

• address[] internal services;

• mapping(address => string[]) internal serviceTags;

sbCommunity has 44 func>ons:

• init – a public func>on used to ini>alize contract fields. Can only be
called by the contract deployer.

• setStakerRewardPercentage – an external func>on used to set a staker
reward percent. Can only be called by the sbTimelock contract.

• getTokenStake – an external view func>on used to fetch sum of specified
tokens that has been staked during the specified day.

• serviceAccepted – an external view func>on used to check whether a
specified service exists or no.

• receiveRewards – an external func>on used by the sbController contract
to receive a reward.

• setPendingAdmin – a public func>on used to set up a new pending
admin. Can only be called by the admin.

• acceptAdmin – a public func>on used to accept admin rights. Can only
be called by the pendingAdmin.

• getAdminAddressUsed – a public view func>on used to fetch admin
address.

• getPendingAdminAddressUsed – a public view func>on used to fetch the
pendingAdmin address.

• getSbControllerAddressUsed – a public view func>on used to fetch the
sbController address.

• getStrongAddressUsed – a public view func>on used to fetch the Strong
token address.

• getSbTokensAddressUsed – a public view func>on used to fetch the
sbTokens address.

• getSbStrongPoolAddressUsed – a public view func>on used to fetch the
sbStrongPool address.

• getSbVotesAddressUsed – a public view func>on used to fetch the
sbVotes address.

• getSbTimelockAddressUsed – a public view func>on used to fetch the
sbTimelock address.

• getDayServiceRewards – a public view func>on used to fetch a reward
for the service received at the specified day.

• getName – a public view func>on used to fetch the community name.

• getCurrentDay – a public view func>on used to fetch a current day.

• getStakerRewardPercentage – a public view func>on used to fetch a
value of the stakerRewardPercentage.

• stakeETH – a public func>on used to stake ETH.

• stakeERC20 – a public func>on used to stake ERC-20.

• unstake – a public func>on used to unstake tokens or ETH. 	

• claimAll – a public func>on used to claim Strong tokens for all days.

• claimUpTo – a public func>on used to claim tokens for up to specified
day.

• getRewardsDueAll – a public view func>on used to calculate a reward
that can be claimed by a specified address. Calculates a reward un>l
current day.

• getRewardsDueUpTo – a public view func>on used to calculate a reward
that can be claimed by a specified address. Calculates a reward un>l a
specified day.

• addService – a public func>on used to add a new service. The service
should have at least a minimum stake amount. Can only be called by the
admin.

• getServices – a public view func>on used to fetch all services addresses.

• getServiceTags – a public view func>on used to fetch tags of a specified
service.

• addTag – a public func>on used to add a new tag to a specified service.
Can only be called by the admin.

• getStakerDayLastClaimedFor – a public view func>on used to fetch last
claim day of a specified staker.

• getStakerTokenStake – a public view func>on used to fetch stake sum of
a specified staker in a specified token at a specified day.

• _getTokenStake – an internal view func>on used	 to fetch sum of
specified tokens that has been staked during the specified day.

• _getStakerTokenStake – an internal view func>on used to fetch stake
sum of a specified staker in a specified token at a specified day.

• _findAmount – an internal pure func>on used to calculate staked sum at
a specified day.

• _getCurrentDay – an internal view func>on used to fetch a current day.

• _updateStakerTokenStake – an internal func>on used to update staker
balance during a stake.

• _updateTokenStake – an internal func>on used to update token balance
during a stake.

• _ u p d a t e S t a ke – a n i n t e r n a l f u n c > o n u s e d t o b y t h e
_updateStakerTokenStake and _updateTokenStake func>ons to update
balances.

• _serviceExists – an internal view func>on used to check whether a
service exists or no.

• _serviceTagExists – an internal view func>on used to check whether a
service tag exists or no.

• _claim – an internal func>on used to claim tokens.

• _getRewardsDue – an internal view func>on used to calculate amount of
tokens that can be claimed.

• _getYearDayIsIn – an internal view func>on used to calculate how may
years are in specified days range.

sbController.sol

sbController is a contract used to manage communi>es and send rewards to
them. 	

sbController imports:

• SafeMath from OpenZeppelin

• IERC20 from OpenZeppelin

• sbTokensInterface

• sbCommunityInterface

• sbStrongPoolInterface

Contract sbController has 16 fields:

• bool internal initDone;

• address internal deployer;

• address internal sbTimelock;

• IERC20 internal strongToken;

• sbTokensInterface internal sbTokens;

• sbStrongPoolInterface internal sbStrongPool;

• uint256 internal startDay;

• m a p p i n g (u i n t 2 5 6 = > u i n t 2 5 6) i n t e r n a l
COMMUNITY_DAILY_REWARDS_BY_YEAR;

• m a p p i n g (u i n t 2 5 6 = > u i n t 2 5 6) i n t e r n a l
STRONGPOOL_DAILY_REWARDS_BY_YEAR;

• uint256 internal MAX_YEARS;

• address[] internal communi^es;

• mapping(uint256 => uint256) internal dayStakeTotal;

• mapping(address => mapping(uint256 => uint256)) internal
communityDayStake;

• mapping(address => mapping(uint256 => uint256)) internal
communityDayRewards;

• mapping(address => uint256) internal communityDayStart;

• uint256 internal dayLastReleasedRewardsFor;

sbController has 26 func>ons:

• constructor – sets up deployer address.

• init – an external func>on used to ini>alize contract fields.

• upToDate – an external view func>on. Checks whether a last reward
release was yesterday.

• addCommunity – an external func>on used to add a new community.
Can only be called by the sbTimelock contract.

• getCommuni^es – an external view func>on used to fetch all
communi>es.

• getDayStakeTotal – an external view func>on used to fetch total sum
that have been staked during a specified day. The sum is in the USD
equivalence.

• getCommunityDayStake – an external view func>on used to fetch total
sum staked by a specified community during a specified day. The sum is
in the USD equivalence.

• getCommunityDayRewards – an external view func>on used to fetch a
community reward at the specified day.

• getCommunityDailyRewards – an external view func>on used to fetch
communi>es daily reward at the specified day.

• getStrongPoolDailyRewards – an external view func>on used to fetch the
Strong Pool daily reward at the specified day.

• getStartDay – an external view func>on used to fetch the start day.

• communityAccepted – an external view func>on used to check whether a
specified community exists or no.

• getMaxYears – a public view func>on used to fetch MAX_YEARS value.

• getCommunityDayStart – a public view func>on used to get a start day
of the specified community.

• getSbTimelockAddressUsed – a public view func>on used to fetch an
address of the sbTimelock contract.

• getStrongAddressUsed – a public view func>on used to fetch an address
of the strong token contract.

• getSbTokensAddressUsed – a public view func>on used to fetch an
address of the sbTokens contract.

• getSbStrongPoolAddressUsed – a public view func>on used to fetch an
address of the getSbTokensAddressUsed contract.

• getCurrentYear – a public view func>on used to fetch a current year of
ac>vity.

• getYearDayIsIn – a public view func>on used to calculate a number of
years in a specified days.

• getCurrentDay – a public view func>on used to fetch a current day.

• getDayLastReleasedRewardsFor – a public view func>on used to fetch a
latest day of reward release.

• releaseRewards – a public func>on used to pay a reward to communi>es
and strong pool. The reward is paid in Strong tokens.

• _getCurrentDay() – an internal view func>on used to fetch a current day.

• _communityExists – an internal view func>on used to check whether a
specified community exists or no.

• _getYearDayIsIn – an internal view func>on used to calculate a number
of years in a specified number of days.

sbGovernor.sol

sbGovernor is a contract used to work with vote proposals. 	

sbGovernor imports:

• sbVotesInterface

• sbTimelockInterface

sbGovernor has 9 fields and constants:

• string public constant name = 'sbGovernor';

• sbTimelockInterface public sbTimelock;

• sbVotesInterface public sbVotes;

• address public guardian;

• uint256 public proposalCount;

• mapping(uint256 => Proposal) public proposals;

• mapping(address => uint256) public latestProposalIds;

• b y t e s 3 2 p u b l i c c o n s t a n t D O M A I N _ T Y P E H A S H =
keccak256('EIP712Domain(string name,uint256 chainId,address
verifyingContract)');

• bytes32 public constant BALLOT_TYPEHASH = keccak256('Ballot(uint256
proposalId,bool support)');

Contract sbGovernor declares 2 data structures:

• Proposal

• Receipt

Contract sbGovernor has 1 enum:

• enum ProposalState { Pending, Ac>ve, Canceled, Defeated, Succeeded,
Queued, Expired, Executed }

Contract sbGovernor declares 5 events:

• ProposalCreated

• VoteCast

• ProposalCanceled

• ProposalQueued

• ProposalExecuted

sbGovernor has 17 func>ons:

• constructor – used to set up sbTimelockAddress, sbVotesAddress and
guardian_ addresses.

• propose – a public func>on used to create a new proposal. The one who
propose should have at least proposalThreshold tokens (at least 1% of
total Strong supply).

• queue – a public func>on used to queue a successful proposal execu>on.

• _queueOrRevert – an internal func>on used to queue a proposal.

• execute – a public payable func>on used to execute queued proposal.

• cancel – a public func>on. Allows a guard to cancel any non-executed
proposal.

• getAc^ons – a public view func>on used to fetch ac>ons of a specified
proposal.

• getReceipt – a public view func>on used to fetch a vote result of a
specified voter in a specified proposal.

• state – a public view func>on used to fetch state of a specified proposal.

• castVote – a public func>on used to vote for or against a specified
proposal.

• _castVote – an internal func>on used to vote for or against a specified
proposal.

• __acceptAdmin – a public func>on used to accept admin rules of the
sbTimelock contract by the sbController contract. Can only be called by
the guardian.

• __abdicate – a public func>on used to renounce guardian permissions.
Can only be called by the guardian.

• __queueSetTimelockPendingAdmin – a public func>on used to queue a
transac>on to set a new pending admin on the sbTimelock contract. Can
only be called by the guardian.

• __executeSetTimelockPendingAdmin – a public func>on used to execute
a transac>on to set a new pending admin on the sbTimelock contract.
Can only be called by the guardian.

• add256 and sub256 – typical safemath func>ons.

sbStrongPool.sol

sbStrongPool is a contract that allows users to stake STRONG tokens. It also
receives rewards from sbController if there are any STRONG tokens staked on a
given day.	

sbStrongPool imports:

• SafeMath from the OpenZeppelin

• IERC20 from the OpenZeppelin

• sbVotesInterface

• sbTimelockInterface

sbStrongPool has 16 fields:

• bool internal initDone;

• address internal deployer;

• IERC20 internal strongToken;

• sbControllerInterface internal sbController;

• sbVotesInterface internal sbVotes;

• address internal sbTimelock;

• uint256 internal minStake;

• mapping(address => uint256[]) internal stakerStakeDays;

• mapping(address => uint256[]) internal stakerStakeAmountsAdded;

• mapping(address => uint256[]) internal stakerStakeAmountsSubtracted;

• mapping(address => uint256) internal stakerIndexLastClaimedOn;

• uint256[] internal stakeDays;

• uint256[] internal stakeAmountsAdded;

• uint256[] internal stakeAmountsSubtracted;

• mapping(address => uint256) internal stakerDayLastClaimedFor;

• mapping(uint256 => uint256) internal dayRewards;

sbStrongPool has 29	func>ons:

• constructor – sets message sender address as deployer.

• init – a public func>on used to set contract fields. Can only be called only
once and only by the deployer.

• updateMinStake – an external func>on used to update minimum stake
amount. Can only be called by the sbTimelock contract.

• stakeFor – an external func>on used to stake STRONG tokens on behalf
of a specified address.

• getStake – an external view func>on used to fetch staked sum made at a
specified day.

• receiveRewards – an external func>on used by the sbController to
receive a reward.

• getDayRewards – a public view func>on used to get a reward for a
specified day.

• stake – a public func>on used to stake STRONG tokens.

• unstake – a public func>on used to withdraw staked tokens.

• getMinStakeAmount – a public view func>on used to get minimum
allowed stake amount.

• getSbControllerAddressUsed – a public view func>on used to get an
address of the sbController contract.

• getStrongAddressUsed – a public view func>on used to get an address of
the STRONG token contract.

• getSbVotesAddressUsed – a public view func>on used to get an address
of the sbVotes contract.

• getSbTimelockAddressUsed – a public view func>on used to get an
address of the sbTimelock contract.

• getStakerDayLastClaimedFor – a public view func>on used to get last
claim date of a specified staker.

• claimAll – a public func>on used to claim all rewards un>l a current day.

• claimUpTo – a public func>on used to claim all rewards un>l a specified
day.

• getRewardsDueAll – a public view func>on used to calculate currently
available reward of a staker.

• getRewardsDueUpTo – a public view func>on used to calculate an
available reward of a staker un>l a specified day.

• getStakerStake – an public view func>on used to get a stake sum of a
staker at a specified day.

• minStaked – an external view func>on used to get a minimum stake sum
of a specified staker.

• _getStake – an internal view func>on used to fetch a total staked sum
made at a specified day.

• _getStakerStake – an internal view func>on used to get a stake sum of a
staker at a specified day

• _findAmount – an internal pure func>on used to find staked amount at
the specified day.

• _getCurrentDay – an internal view func>on used to get a current day.

• _updateStake – an internal func>on used to change stake sum.

• _claim – an internal func>on used to claim all rewards un>l a specified
day.

• _getRewardsDue – an internal view func>on used to calculate an
available reward of a staker un>l a specified day.

• _getYearDayIsIn – an internal pure func>on used to calculate how many
years are in a specified date range.

sbTimelock.sol

sbTimelock	is a contract	used to queue, execute and cancel transac>ons.	

sbTimelock	imports:

• SafeMath from the OpenZeppelin

sbTimelock has 6 events:

• NewAdmin

• NewPendingAdmin

• NewDelay

• CancelTransacGon

• ExecuteTransacGon

• QueueTransacGon

sbTimelock has 7 fields and constants:

• uint256 public constant GRACE_PERIOD = 14 days;

• uint256 public constant MINIMUM_DELAY = 2 days;

• uint256 public constant MAXIMUM_DELAY = 30 days;

• address public admin;

• address public pendingAdmin;

• uint256 public delay;

• mapping(bytes32 => bool) public queuedTransac^ons;

sbTimelock has 9	func>ons:

• constructor – sets admin address and delay period.

• receive – default receive func>on.

• setDelay – a public func>on used to set a delay value. Can only be called
from the contract itself as a result of an executed transac>on.

• acceptAdmin – a public func>on used by a pending admin to accept his
admin rights.

• setPendingAdmin – a public func>on used to set a pending admin. Can
only be called from the contract itself as a result of an executed
transac>on.

• queueTransac^on – a public func>on used to queue a new transac>on.
Can only be called by the admin.

• cancelTransac^on – a public func>on used to cancel a transac>on. Can
only be called by the admin.

• executeTransac^on – a public payable func>on used to execute a
transac>on. Can only be called by the admin.

• getBlockTimestamp – an internal view func>on used to get a current
block >mestamp.

sbTokens.sol

sbTokens used to manage tokens and their prices in the StrongDefi system.	

sbTokens imports:

• SafeMath from the OpenZeppelin

• SafeCast from the OpenZeppelin

• AggregatorV3Interface from the ChainLink

sbTokens has 10 fields and constants:

• bool internal initDone;

• address internal deployer;

• address internal sbTimelock;

• address[] internal tokens;

• address[] internal oracles;

• mapping(address => AggregatorV3Interface) internal priceFeeds;

• mapping(address => mapping(uint256 => uint256)) internal
tokenDayPrice;

• mapping(address => uint80) internal tokenRoundLatest;

• mapping(address => uint256) internal tokenDayStart;

• uint256 internal dayLastRecordedPricesFor;

sbTokens has 21	func>ons:

• constructor – sets deployer address.

• init – a public func>on used to set contract fields. Can only be called only
once and only by the deployer.

• upToDate – an external view func>on used to check whether tokens
prices are up to date.

• addToken – an external func>on used to add a new token and its price
oracle. Can only be called from the sbTimelock contract.

• getTokens – an external view func>on used to fetch all tokens.

• getOracles – an external view func>on used to fetch all price oracles.

• getTokenPrices – an external view func>on used to fetch all token prices.

• tokenAccepted – an external view func>on used to check whether a
specified token exists in the system or no.

• getTokenPrice – an external view func>on used to fetch a specified token
price at a specified day.

• getDayLastRecordedPricesFor – a public view func>on used to get a
value of the dayLastRecordedPricesFor field.

• getSbTimelockAddressUsed – a public view func>on used to get an
address of the sbTimelock contract.

• getTokenRoundLatest – a public view func>on used to fetch a latest
round of a specified token.

• getTokenDayStart – a public view func>on used to fetch a day a specified
token been added.

• getCurrentDay – a public view func>on used to fetch a current day.

• recordTokenPrices – a public func>on used to record latest tokens prices.

• _getDayClosingPrice – an internal func>on used to get a specified token
price at a specified day.

• _getRoundBeforeTimestamp – an internal func>on used to get round
before a specified >mestamp.

• _getCurrentDay – an internal view func>on used to get a current day.

• _dayToTimestamp – an internal pure func>on used to convert days to
>mestamp.

• _tokenExists – an internal view func>on used to check whether a
specified token exist.

• _oracleExists – an internal view func>on used to check whether a
specified oracle exist.

sbVotes.sol

sbVotes contract is used to manage votes and pay rewards.

sbVotes contract has 5 imports:

• SafeMath	— from OpenZeppelin

• IERC20	— from OpenZeppelin

• sbControllerInterface

• sbStrongPoolInterface

• sbCommunityInterface

sbVotes contract has 2 data structures:
• Checkpoint

• Vote

sbVotes contract has 19 fields:
• bool internal initDone;

• address internal deployer;

• sbControllerInterface internal sbController;

• sbStrongPoolInterface internal sbStrongPool;

• IERC20 internal strongToken;

• string public constant name;

• mapping(address => uint96) internal balances;

• mapping(address => address) public delegates;

• mapping(address => mapping(uint32 => Checkpoint));

• mapping(address => uint32) public numCheckpoints;

• mapping(address => uint256) public nonces;

• mapping(address => mapping(address => address[])) internal
voterCommunityServices — a list of voter community services;

• mapping(address => mapping(address => mapping(address => uint256)))
internal voterCommunityServiceVotes;

• mapping(address => uint256) internal voterVotesOut;

• mapping(address => mapping(address => Vote[])) internal
serviceCommunityVotes;

• mapping(address => mapping(address => uint256)) internal
serviceCommunityIndexLastClaimedOn;

• mapping(address => Vote[]) internal communityVotes;

• mapping(address => uint256) internal serviceDayLastClaimedFor;

• mapping(address => mapping(uint256 => uint256)) internal
communityDayRewards;

sbVotes has 48 func>ons:
• constructor — Sets deployer.

• init — a public func>on that ini>alizes contract fields.

• updateVotes — an external func>on used to update votes number.

• getCurrentProposalVotes — an external view func>on used to fetch
current proposal votes for an account.

• getPriorProposalVotes — an external view func>on used to get prior
proposal votes for an account.

• getCommunityVote — an external view func>on used to get community
votes.

• receiveRewards — an external func>on used to receive a reward.

• getServiceDayLastClaimedFor — a public view func>on used to get the
last day when a specified service claimed a reward.

• getSbControllerAddressUsed — a public view func>on used to get the
sbController contract address.

• getSbStrongPoolAddressUsed — a public view func>on used to get the
sbStrongPool contract address.

• getStrongAddressUsed — a public view func>on used to get the STRONG
token contract address.

• getCommunityDayRewards — a public view func>on used to calculate a
reward sum at a specified day.

• recallAllVotes — a public func>on used to recall all votes.

• delegate — a public func>on used to delegate vo>ng rights.

• getAvailableServiceVotes — a public view func>on used to get available
service votes.

• getVoterCommunityServices — public view func>on used to get a voter
community services.

• getVoterCommunityServiceVotes — a public view used to get votes of a
voter community services.

• vote — a public func>on used for vo>ng.

• recallVote — a public func>on used to recall vote.

• claimAll — a public func>on used to claim all rewards un>l current day.

• claimUpTo — a public func>on used to claim all rewards un>l a specified
day.

• getRewardsDueAll — a public view func>on used calculate a reward sum
un>l a current day.

• getRewardsDueUpTo — a public view func>on used calculate a reward
sum un>l a specified day.

• getServiceCommunityVote – a public view func>on used to fetch votes of
a community service at a specified day.

• _getCommunityVote — an internal view func>on used to get community
votes.

• _getServiceCommunityVote — an internal view func>on used to get
votes of a specified service with a specified community.

• _findAmount — an internal pure func>on used to calculate votes.

• _getCurrentDay — an internal view func>on used to get a current day.

• _updateServiceCommunityVotes — an internal func>on used to update
service community votes.

• _updateCommunityVotes — an internal func>on used to update
community votes.

• _updateVotes — an internal func>on used to update votes.

• _addVotes — an internal func>on used to add votes.

• _subbVotes — an internal func>on used to sub votes.

• _addDelegates — an internal func>on used to add delegate votes.

• _subtactDelegates — an internal func>on used to subtract delegated
votes.

• _delegate — an internal func>on used to delegate votes.

• _moveDelegates — an internal func>on used to move delegates.

• _writeCheckpoint — an internal func>on used to write checkpoint.

• _safe32 — an internal pure func>on that checks if number is safe 32.

• _safe96 — an internal pure func>on that checks if number is safe 96.

• _add96 — an internal pure func>on used to safe add numbers.

• _sub96 — an internal pure func>on used to safe subtract.

• _getCurrentProposalVotes — an internal view func>on used to get
current proposal votes for an account.

• _getAvailableServiceVotes — an internal view func>on used to get
available votes of a service.

• _voterCommunityServiceExists — an internal view func>on used to check
whether voter community service exists.

• _recallAllVotes — internal func>on used to recall all votes.

• _claim — an internal func>on used to claim all rewards un>l a specified
day.

• _getRewardsDue — an internal view func>on used to calculate an
available reward of a staker un>l a specified day.

Audit overview
 Critical

1. stakeERC20 func>on of the sbCommunity contract should validate tokens
transfer result. It’s not recommended to rely on excep>ons of the
transferFrom func>on because some ERC-20 implementa>on may not
produce them.

2. stakeFor and stake func>ons of the sbStrongPool contract should
validate tokens transfer result. It’s not recommended to rely on
excep>ons of the transferFrom func>on because some ERC-20
implementa>on may not produce them.

StrongBlock Response:

We will review the possibility of intending to support an ERC20 token
that does not follow the SHOULD specifica>on for failing on an invalid
transfer or transferFrom, and if we find that suppor>ng such tokens may
be desired then we will validate the results of those func>ons.

Hacken Response:

According to the ERC-20 specifica>on, the transfer func>on must throw
an excep>on. But it's impossible to enforce such implementa>on. List of
buggy contracts: hvps://github.com/sec-bit/awesome-buggy-erc20-
tokens/blob/master/csv/verify-reverse-in-transferFrom.o.csv

As soon as it's possible to add new tokens into the system via vo>ng it's
bever to validate transfer results or to check each proposed token
manually and to cancel such proposals.

 High

No high severity issues have been found.

 Medium

No medium severity issues have been found.

 Low

1. Move common code of _getRewardsDue and _claim func>ons to a
separate func>on instead of code duplica>on during the reward
calcula>on.

2. nonces and serviceCommunityIndexLastClaimedOn fields of the sbVotes
contract are never used and should be removed.

StrongBlock Response:

Code that is reasonably common, and not duplicated for any good
reason, will be addressed and streamlined to avoid possibility of
confla>ng logical constructs in a way that could lead to implementa>on
errors.

Hacken Response:

Low and lowest severity issues are advisory and may be leF unfixed.

 Lowest / Code style / Best Practice

1. sbGovernance contains 2 commented out func>on. Remove them to
clean up the code.

2. sbGovernance implements its own safemath func>ons. Consider using
SafeMath library of the OpenZeppelin.

3. stakeFor and stake of the sbStrongPool contract has almost similar
content and can be merged to reduce code duplica>on.

StrongBlock Response:

Code that is reasonably common, and not duplicated for any good
reason, will be addressed and streamlined to avoid possibility of
confla>ng logical constructs in a way that could lead to implementa>on
errors.

Hacken Response:

Low and lowest severity issues are advisory and may be leF unfixed.

Conclusion

Smart contracts within the scope was manually reviewed and analyzed with
sta>c analysis tools. For the contract high level descrip>on of func>onality was
presented in As-is overview sec>on of the report.

Audit report contains all found security vulnerabili>es and other issues in the
reviewed code.

Security engineers found 2 cri>cal, 2 low and 3 lowest severity issues during
audit. It’s recommended to fix all cri>cal issues.

As Smart Contract Auditor we have concerns for next items:

Category Check Item Comment

F u n c > o n a l
review

▪ Assets integrity Always validate transfer results when working with
untrusted erc-20 implementa>ons.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with the
best industry prac>ces at the date of this report, in rela>on to cybersecurity
vulnerabili>es and issues in smart contract source code, the details of which
are disclosed in this report, (Source Code); the Source Code compila>on,
deployment and func>onality (performing the intended func>ons).

The audit makes no statements or warran>es on security of the code. It also
cannot be considered as a sufficient assessment regarding the u>lity and safety
of the code, bugfree status or any other statements of the contract. While we
have done our best in conduc>ng the analysis and producing this report, it is
important to note that you should not rely on this report only - we recommend
proceeding with several independent audits and a public bug bounty program
to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain plaiorm. The
plaiorm, its programming language, and other soFware related to the smart
contract can have own vulnerabili>es that can lead to hacks. Thus, the audit
can’t guarantee explicit security of the audited smart contracts.

	Document
	Table of contents
	Introduction
	Scope
	Executive Summary
	Severity Definitions
	AS-IS overview
	Conclusion
	Disclaimers

